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1. Introduction

Let

R a commutative Noetherian ring with (S2) and Q(R) is Gorenstein

modR the category of finitely generated R-modules

For M ∈ modR,

M is a reflexive R-module
def⇐⇒ the natural map M → M∗∗ is an isomorphism

⇐⇒ Mp is reflexive for p ∈ SpecR s.t. dimRp = 1

and M satisfies (S2)

where (−)∗ = HomR(−,R) and

M satisfies (S2)
def⇐⇒ depthRp

Mp ≥ inf{2, dimRp} for ∀p ∈ SpecR.
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In what follows, let

(R,m) a CM local ring with dimR = 1, Q(R) is Gorenstein, and |R/m| =∞

R ⊆ A ⊆ Q(R) an intermediate ring s.t. A ∈ modR

CM(A) the subcategory of modA consisting of MCM A-modules

Ref(A) the subcategory of modA consisting of reflexive A-modules

For M ∈ modA,

M is a MCM A-module
def⇐⇒ depthAp

Mp ≥ dimAp for ∀p ∈ SpecA

⇐⇒ M is a torsion-free A-module.

Then Ref(A) ⊆ CM(A) and

Ref(A) = {M ∈ modA | ∃ 0→ M → F0 → F1 s.t. Fi ∈ modA is free}
= {M ∈ modA | ∃ 0→ M → F → X → 0 s.t. F is free, X ∈ CM(A)}
= ΩCM(A).

Note that ΩCM(A) = CM(A) ⇐⇒ A is a Gorenstein ring.
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By setting E = EndR(m) ∼= m : m, we have

Theorem 1.1 (Goto-Matsuoka-Phuong)

ΩCM(E ) = CM(E ) ⇐⇒ R is almost Gorenstein and m is stable.

Recall that

an ideal I of R is stable if I 2 = aI for ∃a ∈ I

m is stable ⇐⇒ R has minimal multiplicity

R is an almost Gorenstein ring if mK ⊆ R, where R ⊆ K ⊆ R s.t. K ∼= KR .

Let ΩCM′(R) = {M ∈ ΩCM(R) | M doesn’t have free summands}.

Theorem 1.2 (Kobayashi)

(1) ΩCM(E ) ⊆ ΩCM′(R) ⊆ CM(E ).

(2) ΩCM(E ) = ΩCM′(R) ⇐⇒ m is stable.

(3) ΩCM′(R) = CM(E ) ⇐⇒ R is an almost Gorenstein ring.
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Question 1.3

What happens if we take EndR(I )?

Another motivation comes from the following.

Theorem 1.4 (Dao-Iyama-Takahashi-Vial)

Let (A,m) be an excellent henselian local normal domain with dimA = 2 and
A/m is algebraically closed. Then

A has a rational singularity ⇐⇒ ΩCM(A) is of finite type.

A subcategory X of modA is called of finite type if X = addAM for ∃M ∈ modA.
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Question 1.5

When is ΩCM(R) of finite type for a one-dimensional ring R?

Recall that

R is an almost Gorenstein ring ⇐⇒ ΩCM′(R) = CM(E )

ΩCM′(R) = {M ∈ ΩCM(R) | M doesn’t have free summands}.

Corollary 1.6 (Kobayashi)

Suppose that R is an almost Gorenstein ring. Then

ΩCM(R) is of finite type ⇐⇒ CM(E ) is of finite type

where E = EndR(m) ∼= m : m.
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2. Main theorem

Note that m is a regular reflexive trace ideal, once R is not a DVR.

For an R-module M, consider the homomorphism

τ : M∗ ⊗R M → R, f ⊗m 7→ f (m) for f ∈ M∗ and m ∈ M

and set trR(M) = Im τ .

We say that I is a trace ideal of R
def⇐⇒ I = trR(M) for some R-module M

⇐⇒ I = trR(I )

⇐⇒ R : I = I : I . (when I is regular)

R : m = m : m, if R is not a DVR. (Goto-Matsuoka-Phoung)

M doesn’t have free summands ⇐⇒ trR(M) ⊆ m. (Lindo)

I = R : A is a regular reflexive trace ideal of R.

Hence ΩCM′(R) = {M ∈ ΩCM(R) | trR(M) ⊆ m}.
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An m-primary ideal I of R is called Ulrich, if I is stable and I/I 2 is R/I -free.

For regular ideals in R, we have

Ulrich ideals +3 good ideals ks +3

��

stable trace ideals +3 trace ideals

reflexive ideals

If R is Gorenstein, there are one-to-one correspondences for regular ideals:

(Goto-Isobe-Kumashiro, Goto-Isobe-T)

{ trace ideals } ←→ { birational module-finite extensions }

{ good ideals } ←→ {Gorenstein birational module-finite extensions }

{Ulrich ideals } ←→ {Gorenstein birational extensions A s.t.µR(A) = 2 }

{ reflexive trace ideals } ←→ { reflexive birational module-finite extensions }
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Let I be a regular reflexive trace ideal of R. We set

A = EndR(I ) ∼= I : I

ΩCM(R, I ) = {M ∈ ΩCM(R) | trR(M) ⊆ I}.
Choose R ⊆ K ⊆ R s.t. K ∼= KR . Set S = R[K ] and c = R : S .

Theorem 2.1 (Main theorem)

(1) ΩCM(A) ⊆ ΩCM(R, I ) ⊆ CM(A).

(2) ΩCM(A) = ΩCM(R, I ) ⇐⇒ I is stable.

(3) ΩCM(R, I ) = CM(A) ⇐⇒ IK = I ⇐⇒ I ⊆ c.

Corollary 2.2

ΩCM(A) = CM(A) ⇐⇒ I is stable and I ⊆ c ⇐⇒ A is a Gorenstein ring.

In particular, since ΩCM(R, c) = CM(S), we have

ΩCM(S) = ΩCM(R, c) ⇐⇒ S is a Gorenstein ring.
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For a subcategory X of modR, we denote by

indX the set of isomorphism classes of indecomposable R-modules in X .

Corollary 2.3

Let R be a Gorenstein local domain with dimR = 1. Then

indΩCM(R) =
∪

R ̸=A∈Y

indCM(A) ∪ {[R]}

=
∪

I∈T , I ̸=R

indCM(EndR(I )) ∪ {[R]}

where

Y is the set of birational module-finite extensions A s.t. A ∈ Ref(R)

T is the set of regular reflexive trace ideals of R.

Question 2.4

ΩCM(R) is of finite type ⇐⇒ CM(A) is of finite type for some A ∈ Y?
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3. When is ΩCM(R) of finite type?

Recall R ⊆ K ⊆ R s.t. K ∼= KR , S = R[K ] and c = R : S . Then S ∈ Y and

R is a Gorenstein ring ⇐⇒ R = K ⇐⇒ R = S ⇐⇒ R = c

R is an almost Gorenstein ring ⇐⇒ K/R ∼= (R/m)⊕ ⇐⇒ S/R ∼= (R/m)⊕

⇐⇒ m ⊆ c

R is an generalized Gorenstein ring if R = c, or R 6= c and K/R is R/c-free.

Theorem 3.1

Suppose R is a generalized Gorenstein ring with minimal multiplicity. Then

| indΩCM(R)| = ℓR(R/c) + | indCM(S)|.

Hence, ΩCM(R) is of finite type ⇐⇒ CM(S) is of finite type.

Corollary 3.2

Suppose e(R) = v(R) = 3. Then | indΩCM(R)| = ℓR(R/c) + | indCM(S)|.
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Corollary 3.3

Suppose R is a non-Gorenstein almost Gorenstein ring with minimal multiplicity.
Then | indΩCM(R)| = 1 + | indCM(S)|.

Proposition 3.4

Suppose R is a DVR, R ∈ modR, and mR ⊆ R. Then indΩCM(R) =
{
[R], [R]

}
.

Example 3.5

Let A be a RLR with n = dimA ≥ 2. Let X1,X2, . . . ,Xn be a regular sop of A
and set Pi = (Xj | 1 ≤ j ≤ n, j 6= i) for 1 ≤ i ≤ n. We set R = A/

∩n
i=1 Pi . Then

indΩCM(R) =
{
[R], [R]

}
.

Example 3.6

Suppose chR > 0. If R is F -pure, then indΩCM(R) =
{
[R], [R]

}
, provided R is

a DVR.
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Note that

if R is a generalized Gorenstein ring with minimal multiplicity, then
S = R[K ] is a Gorenstein ring.

Corollary 3.7

Let R be the numerical semigroup ring over a field k. Suppose that R is a
generalized Gorenstein ring with minimal multiplicity. Then TFAE.

(1) ΩCM(R) is of finite type.

(2) S = k[[H]] is a semigroup ring of H, where H is one of the following forms:

(a) H = N,
(b) H = 〈2, 2q + 1〉 (q ≥ 1),
(c) H = 〈3, 4〉, or
(d) H = 〈3, 5〉.
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Note that if CM(R) is of finite type, then

XR is a finite set (Goto-Ozeki-Takahashi-Watanabe-Yoshida)

R is analytically unramified (Krull, Leuschke-Wiegand)

where XR denotes the set of Ulrich ideals of R.

Theorem 3.8

If ΩCM(R) is of finite type, then XR is finite and R is analytically unramified.

Example 3.9

Let (A,m) be a CM local ring with dimA = 1, ∃KA, |A/m| =∞. Assume Q(A)
is a Gorenstein ring. We set

R = A⋉ A.

Then, because |XR | =∞, we have | indΩCM(R)| =∞.
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We say that R is an Arf ring, if every integrally closed regular ideal is stable.

Theorem 3.10 (cf. Dao, Dao-Lindo, Isobe-Kumashiro)

Suppose R is a local ring. If R is an analytically unramified Arf ring, then
ΩCM(R) is of finite type. In particular, XR is finite.

Example 3.11

Let R = k[[t3, t4]]. Then | indΩCM(R)| = | indCM(R)| <∞, but R is not an
Arf ring.

Example 3.12

Let R = k[[t3, t7]]. Then

|XR | = |{(t6 − ct7, t10) | 0 6= c ∈ k}| <∞

provided k is finite. However | indΩCM(R)| =∞ and R is not an Arf ring.
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Thank you for your attention.
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